Inorg. Chem. **2007**, 46, 8426−8434

Anisole−**Diphenoxide Ligands and Their Zirconium Dichloride and Dialkyl Complexes**

Tsukasa Matsuo† and Hiroyuki Kawaguchi*

Coordination Chemistry Laboratories, Institute for Molecular Science, Myodaiji, Okazaki 444-8787, Japan

Received June 7, 2007

Linear triphenol H₃[^RO₃] (2,6-bis(3-*tert*-butyl-5-methyl-2-hydroxybenzyl)-4-R-phenol; R = Me, 'Bu) was found to
underge selective meno depretenation and meno *O* methylotion. Depretenation of H I^RO 1 with 1 equiv undergo selective mono-deprotonation and mono-O-methylation. Deprotonation of H₃[^RO₃] with 1 equiv of "BuLi resulted in the formation of $Li\{H_2[^RO_3]\}\{Et_2O\}_2$ ($R = Me$ (**1a**), *'Bu* (**1b**)), in which the central phenol unit was
lithiated Treatment of H IBO Lwith methyl a toluenesulfenate in the presence of K CO, in CH CN gave t lithiated. Treatment of H₃^{[P}O₃] with methyl *p*-toluenesulfonate in the presence of K₂CO₃ in CH₃CN gave the corresponding anisol-diphenol H₂[^RO₂O] (2,6-bis(3-*tert*-butyl-5-methyl-2-hydroxybenzyl)-4-R-anisole; R = Me (**2a**),
Pu (**2b**)), Peaction of H-I^RO-Ol with 2 equiv of "Bul i gave the dilithiated derivatives Li-I^RO Bu (2b)). Reaction of H₂[^RO₂O] with 2 equiv of "BuLi gave the dilithiated derivatives Li₂[^RO₂O]. The lithium salts were reacted with ZrCl₄ in toluene/THF to obtain the dichloride complex [RO₂O]ZrCl₂(thf) (R = Me (**3a**), 'Bu (**3b**)).
3b underwent dimerization along with a loss of THE to generate ([BuO-O]ZrCl, 1, (4), whereas 4 w 3 b underwent dimerization along with a loss of THF to generate $\{[^{\sf{BU_0}}_2O]ZrCl_2\}_2$ (**4**), whereas **4** was dissolved in THF to regenerate the monomer 3b. Alkylation of 3 with MeMgBr, PhCH₂MgCl, and Me₃SiCH₂MgCl gave [^{Me}O₂O]-ZrMe₂(thf) (5), [^RO₂O]Zr(CH₂Ph)₂ (R = Me (**6a**), 'Bu (**6b**)), and [^{ßu}O₂O]Zr(CH₂SiMe₃)₂ (7), respectively. Reaction of
2b with LiBHEt, produced the budride bridged dimer ILi (thf) CIL(I^{Bu}O 17r), (... H **3b** with LiBHEt₃ produced the hydride-bridged dimer [Li₂(thf)₄Cl]{[^{ßu}O₃]Zr}₂(µ–H)₃} (**8**), in which demethylation of the dianionic $\lceil \frac{B_0}{Q_2} \rceil$ ligand took place to give the trianionic $\lceil \frac{B_0}{Q_3} \rceil$ ligand. The X-ray crystal structures of **1b**, **2a**, **3a**, **4**, **6a**, and **7** were reported.

Introduction

The search for new ancillary ligands capable of supporting various inorganic/organometallic reactions is one of the challenging problems in coordination and organometallic chemistry. One approach involves the utilization of polydentate ligands to impose specific coordination geometries upon one or more metal centers.¹⁻⁴ Phenoxide groups are ubiquitous in polydentate ligands and are frequently used as

* To whom correspondence should be addressed. E-mail: hkawa@ ims.ac.jp.

- *Int. Ed.* **¹⁹⁹⁹**, *³⁸*, 428-447. (b) Braunstein, P.; Naud, F. *Angew. Chem., Int. Ed.* **²⁰⁰¹**, *⁴⁰*, 680-699. (c) MacLachlan, E. A.; Fryzuk, M. D. *Organometallics* **²⁰⁰⁶**, *²⁵*, 1530-1543. (d) Schrock, R. R. *Acc. Chem. Res.* **¹⁹⁹⁷**, *³⁰*, 9-16. (e) Gade, L. H. *Chem. Commun.* **²⁰⁰⁰**, ¹⁷³-181.
- (2) (a) Ohff, M.; Ohff, A.; van der Boom, M. E.; Milstein, D. *J. Am. Chem. Soc.* **¹⁹⁹⁷**, *¹¹⁹*, 11687-11688. (b) Jensen, C. M. *Chem. Commun.* **¹⁹⁹⁹**, 2443-2449. (c) Gossage, R. A.; van de Kuil, L. A.; van Koten, G. *Acc. Chem. Res.* **¹⁹⁹⁸**, *³¹*, 423-431.
- (3) (a) Gavrilova, A. L.; Bosnich, B. *Chem. Re*V*.* **²⁰⁰⁴**, *¹⁰⁴*, 349-384. (b) Stang, P. J.; Olenyuk, B. *Acc. Chem. Res.* **¹⁹⁹⁷**, *³⁰*, 502-518.
- (4) (a) Holland, P. L.; Tolman, W. B. *J. Am. Chem. Soc.* **¹⁹⁹⁹**, *¹²¹*, 7270- 7271. (b) Kitajima, N.; Tolman, W. B. *Prog. Inorg. Chem.* **1995**, *43*, ⁴¹⁹-531.

components of mixed-donor sets. $5-8$ Research regarding phenoxide-based polydentate ligand systems has been greatly

- (6) (a) Dinger, M. B.; Scott, M. J. *Inorg. Chem.* **²⁰⁰⁰**, *³⁹*, 1238-1254. (b) Gordon, B. W. F.; Scott, M. J. *Inorg. Chim. Acta* **²⁰⁰⁰**, *²⁹⁷*, 206- 216. (c) Appiah, W. O.; DeGreeff, A. D.; Razidlo, G. L.; Spessard, S. J.; Pink, M.; Young, V. G., Jr.; Hofmeister, G. E. *Inorg. Chem.* **2002**, *⁴¹*, 3656-3667. (d) Chaplin, A. B.; Harrison, J. A.; Nielson, A. J.; Shen, C.; Waters, J. M. *Dalton Trans.* **²⁰⁰⁴**, 2643-2648. (e) Maestri, A. G.; Brown, S. N. *Inorg. Chem.* **²⁰⁰⁴**, *⁴³*, 6995-7004. (f) Kayal, A.; Ducruet, A. F.; Lee, S. C. *Inorg. Chem.* **²⁰⁰⁰**, *³⁹*, 3696-3704.
- (7) (a) Zhu, S. S.; Cefalo, D. R.; La, D. S.; Jamieson, J. Y.; Davis, W. M.; Hoveyda, A. H.; Schrock, R. R. *J. Am. Chem. Soc.* **1999**, *121*, ⁸²⁵¹-8259. (b) Jacobsen, E. N.; Zhang, W.; Muci, A. R.; Ecker, J. R.; Deng, L. *J. Am. Chem. Soc.* **¹⁹⁹¹**, *¹¹³*, 7063-7064. (c) Mitani, M.; Furuyama, R.; Mohri, J.; Saito, J.; Ishii, S.; Terao, H.; Kashiwa, N.; Fujita, T. *J. Am. Chem. Soc.* **²⁰⁰²**, *¹²⁴*, 7888-7889. (d) Capacchione, C.; Manivannan, R.; Barone, M.; Beckerle, K.; Centore, R.; Oliva, L.; Proto, A.; Tuzi, A.; Spaniol, T. P.; Okuda, J. *Organometallics* **²⁰⁰⁵**, *²⁴*, 2971-2982. (e) Tshuva, E. Y.; Goldberg, I.; Kol, M. *J. Am. Chem. Soc.* **²⁰⁰⁰**, *¹²²*, 10706-10707. (f) Chan, M. C. W.; Tam, K.-H.; Zhu, N.; Chiu, P.; Matsui, S. *Organometallics* **²⁰⁰⁶**, *²⁵*, 785-792. (g) Kim, Y.; Verkade, J. G. *Organometallics* **²⁰⁰²**, *²¹*, 2395-2399.

8426 Inorganic Chemistry, Vol. 46, No. 20, 2007 10.1021/ic7011167 CCC: \$37.00 © 2007 American Chemical Society Published on Web 09/05/2007

[†] Present address: Frontier Research System, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan. (1) (a) Britovsek, G. J. P.; Gibson, V. C.; Wass, D. F. *Angew. Chem.,*

^{(5) (}a) Redshaw, C.; Rowan, M. A.; Warford, L.; Homden, D. M.; Arbaoui, A.; Elsegood, M. R. J.; Dale, S. H.; Yamato, T.; Casas, C. P.; Matsui, S.; Matsuura, S. Chem.-Eur. J. 2007, 13, 1090-1107. (b) Redshaw, C.; Humphrey, S. M. *Polyhedron* **²⁰⁰⁶**, *²⁵*, 1946-1954. (c) Redshaw, C.; Homden D. M.; Rowan, M. A.; Elsegood, M. R. J. *Inorg. Chim. Acta* **²⁰⁰⁵**, *³⁵⁸*, 4067-4074.

Zirconium Anisole-Diphenoxide Complexes

facilitated by their ease of synthesis. A large range of structures can be accessed, often requiring only a few steps from many commercially available phenol derivatives. For example, calixarenes can be readily prepared through condensation reactions of aldehydes and phenols.⁹ These cyclic polyphenoxides provide a robust and well-defined O-donor coordination environment, and their metal complexes serve as models for reactive metal-oxide surfaces.¹⁰ In particular, early-transition-metal derivatives of calix[4]arene possess the ability to activate small molecules such as dinitrogen and carbon monoxide.¹¹ Important examples of phenoxidecontaining mixed-donor ligands are the heteroatom-bridged bisphenoxides, which support the metal centers capable of displaying efficient activity as catalysts for various reactions. Titanium complexes bearing sulfur-bridged diphenoxide ligands have proven to be versatile olefin polymerization catalyst precursors upon activated by methylaluminoxane,¹² whereas copper complexes have been shown to catalyze the aerobic oxidation of alcohols.¹³ The considerable potential of these ligand systems in small-molecule activation and homogeneous catalysis prompts us to develop metal complexes supported by phenoxide-based polydentate ligands.

We previously reported the use of linear and tripodal triphenoxide ligands to support early transition metals (**A** and \mathbf{B} ; Chart 1).^{14,15} In these ligands, three phenoxide units are connected at ortho positions through single carbon linkers. As part of a program aimed at developing new mixed-donor ligands, we recently described the examples of transition-metal complexes employing dianionic phenoxide-carbene ligands, in which an *N*-heterocyclic carbene group is flanked by two phenoxide groups (**C**).16 Next, we examined the partial functionalization of the phenoxide groups of triphenoxide ligands via alkylation, giving etherphenoxide mixed-donor ligands. This method has been successfully employed in the synthesis of calixarene

- (8) Kawaguchi, H.; Matsuo, T. *J. Organomet. Chem.* **²⁰⁰⁴**, *⁶⁸⁹*, 4228- 4243.
- (9) (a) Böhmer, V. Angew. Chem., Int. Ed. Engl. 1995, 34, 713-745. (b) Gutsche, C. D. *Acc. Chem. Res.* **¹⁹⁸³**, *¹⁶*, 161-170.
- (10) (a) Gibson, V. C.; Redshaw, C.; Elsegood, M. R. J. *Chem. Soc., Dalton Trans.* **²⁰⁰¹**, 767-769. (b) Wieser, C.; Dieleman, C. B.; Matt, D. *Coord. Chem. Rev.* **1997**, *165*, 93–161. (c) Dubberley, S. R.; Friedrich, A.; Willman, D. A.; Mountford, P.; Radius, U. *Chem.*—*Eur. J.* **2003**, *⁹*, 3634-3654. (d) Floriani, C.; Floriani-Moro, R. *Ad*V*. Organomet.*
- *Chem.* **²⁰⁰¹**, *⁴⁷*, 167-233. (11) (a) Caselli, A.; Solari, E.; Scopelliti, R.; Floriani, C.; Re, N.; Rizzoli, C.; Chiesi-Villa, A. *J. Am. Chem. Soc.* **²⁰⁰⁰**, *¹²²*, 3652-3670. (b) Caselli, A.; Solari, E.; Scopelliti, R.; Floriani, C. *J. Am. Chem. Soc.* **²⁰⁰⁰**, *¹²²*, 538-539.
- (12) (a) van der Linden, A.; Schaverien, C. J.; Meijboom, N.; Ganter, C.; Orpen, A. G. *J. Am. Chem. Soc.* **¹⁹⁹⁵**, *¹¹⁷*, 3008-3021. (b) Sernetz, F. G.; Mulhaupt, R.; Fokken, S.; Okuda, J. *Macromolecules* **1997**, *³⁰*, 1562-1569.
- (13) Chaudhuri, P.; Hess, M.; Flo¨rke, U.; Wieghardt, K*. Angew. Chem., Int. Ed.* **¹⁹⁹⁸**, *³⁷*, 2217-2220.
- (14) (a) Kawaguchi, H.; Matsuo, T. *Angew. Chem., Int. Ed.* **²⁰⁰²**, *⁴¹*, 2792- 2795. (b) Kawaguchi, H.; Matsuo, T. *J. Am. Chem. Soc.* **2003**, *125*, ¹⁴²⁵⁴-14255. (c) Matsuo, T.; Kawaguchi, H. *Chem. Lett.* **²⁰⁰⁴**, *³³*, ⁶⁴⁰-645. (15) Akagi, F.; Matsuo, T.; Kawaguchi, H. *J. Am. Chem. Soc.* **2005**, *127*,
-
- ¹¹⁹³⁶-11934. (16) (a) Aihara, H.; Matsuo, T.; Kawaguchi, H. *Chem. Commun.* **2003**, 2204-2205. (b) Zhang, D.; Aihara, H.; Watanabe, T.; Matsuo, T.; Kawaguchi, H. *J. Organomet, Chem.* 2007. 692, 234-242. Kawaguchi, H. *J. Organomet. Chem.* **²⁰⁰⁷**, *⁶⁹²*, 234-242.

Chart 1

derivatives.^{9a,10c,d,17} The overall charge and steric demand can be tuned by the alkylation of polyphenoxide ligands. In addition, the neutral ether group can act as a weak donor as compared with an anionic phenoxide group. Herein, we report the methylation of the central phenoxide group of the triphenoxide **A**, giving an anisole-dianionic ligand, $[^{R}O_{2}O]^{2}$ -- (**D**). The full details of the synthesis of zirconium complexes and their crystal structures are also described in this article. Preliminary results on the reactivity of the dibenzyl compounds supported by the $[{}^{R}O_{2}O]$ ligand have been communicated.18

Results and Discussion

Ligand Synthesis. Mono-deprotonation of $H_3[{}^R_3O_3]$ was examined to prepare the ether-diphenoxide ligands via alkylation of the resulting monoanionic species. The acidity of oligomeric phenolic compounds is important for selective substitution reactions and determined by the system of intramolecular hydrogen bonds.¹⁹ The pK_{al} values of orthoconnected phenolic oligomers are significantly reduced relative to those of the corresponding monomeric phenols, whereas the pK_{a2} values lie considerably higher.²⁰ We and others have previously reported that $H_3[^R O_3]$ could be fully deprotonated by a reaction with 3 equiv of *ⁿBuLi*, and these tri-lithium salts serve as useful precursors for the synthesis of transition-metal derivatives.^{6b,21} The triphenol $H_3[^R O_3]$ was found to be selectively monolithiated by the dropwise addition of 1 equiv of "BuLi in hexane to an Et₂O solution of the triphenol at 0° C (Scheme 1). Evaporation of the solvent yielded $Li{H_2[^R O_3]}(Et_2O)_2$ ($R = Me$ (**1a**), *'Bu* (**1b**)) as a white solid as a white solid.

- (17) (a) Ozerov, O. V.; Parkin, S.; Brock, C. P.; Ladipo, F. T. *Organometallics* **²⁰⁰⁰**, *¹⁹*, 4187-4190. (b) Estler, F.; Herdtweck, E.; Anwander, R. *J. Chem. Soc., Dalton Trans.* **²⁰⁰²**, 3088-3089.
- (18) (a) Matsuo, T.; Kawaguchi, H. *J. Am. Chem. Soc*. **²⁰⁰⁶**, *¹²⁸*, 12362- 12363. (b) Matsuo, T.; Kawaguchi, H. *J. Am. Chem. Soc*. **2005**, *127*, l7198-17199. (19) Grootenhuis, P. D. J.; Kollman, P. A.; Groenen, L. C.; Reinhoudt, D.
- N.; van Hummel, G. J.; Ugozzoli, F.; Andreetti, G. D. *J. Am. Chem.*
- *Soc.* **1990**, *112*, 4165-4176.
(20) (a) Böhmer, V.; Beismann, K.; Stotz, D.; Niemann, W.; Vogt, W. *Makromol. Chem.* **1983**, *184*, 1793-1806. (b) Böhmer, V.; Schade, E.; Antes, C.; Pachta, J.; Vogt, W.; Kämmerer, H. *Makromol. Chem.* **¹⁹⁸³**, *¹⁸⁴*, 2361-2376. (c) Flanagin, L. W.; McAdams, C. L.; Hinsberg, W. D.; Sanchez, I. C.; Willson, C. G. *Macromolecules* **1999**, *³²*, 5337-5343.
- (21) (a) Kawaguchi, H.; Matsuo, T. *J. Organomet. Chem*. **²⁰⁰⁵**, *⁶⁹⁰*, 5333- 5345. (b) Matsuo, T.; Kawaguchi, H. *Inorg. Chem*. **²⁰⁰²**, *⁴¹*, 6090- 6098.

Single crystals of $1b$, grown from a saturated $Et₂O$ solution, were examined by X-ray crystallography to confirm the monomeric nature and lithiation of the central phenolic group in the triphenol. The hydrogen atoms bound to O(1) and O(3) were located within the diffraction pattern and refined isotropically. The mono-deprotonated ligand is coordinated in a monodentate fashion to the lithium, which resides in a distorted trigonal-planar environment (sum of angles around $Li = 357.9^{\circ}$ made up of one phenoxide oxygen $[O(2)]$ and two Et₂O molecules $[O(3)$ and $O(4)]$. The Li-O(2) distance of 1.822(7) Å is typical of lithiumphenoxide compounds^{6a,b,22} and shows the expected shortening with respect to the $Li-O(ether)$ distances of 1.929(8) and 1.912(8) Å. The ligand framework in **1b** adopts a U-shaped conformation with two short separations of 2.569- (4) and 2.645(3) Å between the phenoxide $[O(2)]$ and phenolic oxygen atoms $[O(1), O(3)]$. The proximity of phenoxide and phenolic groups promotes intramolecular hydrogen bonding.23 The solid-state structure in **1b** discussed above is not observed in solution. The 1H NMR spectra of the mono-lithium salts **1a** and **1b** in C_6D_6 at room temperature show the absence of molecular symmetry, as suggested by two inequivalent ortho *^t* Bu environments. The methylene protons linking the phenyl rings are broad, suggesting that a dynamic process is occurring in this system. The remaining OH resonances could not be assigned because of broadening and overlapping. The ⁷Li NMR spectra of **1a** and **1b** in C₆D₆ exhibit a single resonance at 2.06 and 2.18 ppm, respectively.

The related mono-potassium salt of the sulfur-bridged diphenol 1,1'-S(2-KO)(2'-HO)(C₆H₂'Bu-3-Me-5)₂(Et₂O) underwent monoalkylation with methyl iodide to give the corresponding anisole-phenol.²⁴ However, attempts to prepare the ether-diphenols by alkylation of the mono-lithium salts **1a** and **1b** were unsuccessful. For example, treatment of **1b** with PhCH₂Cl in THF at 60 \degree C and subsequent hydrolysis led to the recovered starting triphenol $H_3[^{\ell B_u}O_3]$. As an

Figure 1. Molecular structure of $Li{H_2}^{B_1}O_3$] (Et_2O) (1b). Hydrogen atoms bound to carbon have been omitted for clarity. Selected bond distances (A) and angles (deg): Li-O(2) 1.822(7), Li-O(4) 1.929(8), Li-O(5) 1.912- $(8), O(1)$ - C(1) 1.375(4), O(2) - C(8) 1.349(4), O(3) - C(15) 1.358(4), O(1) \cdot · $O(2)$ 2.569(4), $O(2) \cdot \cdot \cdot O(3)$ 2.645(3), $O(2) \cdot \cdot \cdot H(64)$ 1.68, $O(2) \cdot \cdot \cdot H(65)$ 1.77,
 $O(2)$ - Li - $O(4)$ 114.9(3), $O(2)$ - Li - $O(5)$ 121.5(4), $O(4)$ - Li - $O(5)$ 121.5-O(2)-Li-O(4) 114.9(3), O(2)-Li-O(5) 121.5(4), O(4)-Li-O(5) 121.5- (4), C(8)-O(2)-Li 135.6(3), C(6)-C(7)-C(9) 117.0(3), C(13)-C(14)- $C(16)$ 115.6(3), $O(1) \cdots O(2) \cdots O(3)$ 93.3(1), $O(1) - H(64) \cdots O(2)$ 163, $O(2) H(65) \cdots O(3)$ 172.

alternative, we explored mono-*O*-alkylation of $H_2[{}^R_2O_2_2]$ by using methyl *p*-toluenesulfonate (MeOTs) and a relatively weak base K_2CO_3 . This follows the reports for selective dialkylation of calix[4]arenes in the 1,3-position.²⁵ The triphenol $H_3[{}^R_3]$ reacted with MeOTs in the presence of 0.5 equiv of K_2CO_3 to afford the corresponding anisolediphenol $H_2[{}^RO_2O]$ ($R = Me(2a)$, *Bu (2b))* in good yields.
Although the synthesis of $H_2[{}^{Me}O_2O]$ was previously reported Although the synthesis of $H_2[{\text{Me}}O_2O]$ was previously reported by the condensation reaction between 2-*tert*-butyl-4-methylphenol and 2,5-hydroxymethyl-4-methylanisole under acidic conditions, the yield was relatively low (12%) .^{20a} The ¹H NMR spectra of $H_2[{}^R_2O_2O]$ in CDCl₃ are consistent with a symmetrical molecule, and the phenolic protons reside at 6.32 for **2a** and 6.34 ppm for **2b**. A solution of $H_2[^RO_2O]$ in Et₂O reacted smoothly with 2 equiv of *ⁿ*BuLi at 0 °C to produce the dilithium salt $Li_2[^{R}O_2O]$, which could be utilized for subsequent transmetalation reactions without further purification.

A view of the molecular structure of $H_2[{}^{Me}O_2O]$ (2a) is shown in Figure 2. All of the hydrogen atoms were found and refined isotropically. The molecule is bisected by a crystallographic mirror plane containing the atoms O(2), $C(8)$, $C(11)$, $C(17)$, and $C(18)$. Like the monolithiated derivative **1b**, intramolecular hydrogen bonding interaction induces a U-shaped conformation of the $[MeO_2O]$ backbone. However, the weakening of hydrogen bonding interactions in **2a** is reflected in O \cdots O separations (3.029(2) Å) that are substantially greater than in the mono-lithium salt **1b** (2.269- (4), $2.645(3)$ Å), consistent with a decrease in electron density on the O(2) atom upon alkylation. The three oxygen atoms of **2a** form a bent arrangement with the $O(1)\cdots O(2)$ \cdot O(1') angle of 83.79(4)°. This contrasts to an S-shaped

⁽²²⁾ Vilardo, J. S.; Fanwick, P. E.; Rothwell, I. P. *Polyhedron* **1998**, *17*,

^{769-771.&}lt;br>(23) (a) Agbaria, K.; Biali, S. E.; Böhmer, V.; Brenn, J.; Cohen, S.; Frings, M.; Grynszpan, F.; Harrowfield, J. McB.; Sobolev, A. N.; Thondorf, I. *J. Org. Chem.* **²⁰⁰¹**, *⁶⁶*, 2900-2906. (b) Bilyk, A.; Hall, A. K.; Harrowfield, J. M.; Hosseini, M. W.; Skelton, B. W.; White, A. H*. Inorg, Chem.* **²⁰⁰¹**, *⁴⁰*, 672-686.

⁽²⁴⁾ Arnold, P. L.; Hall, J. J.; Natrajan, L. S.; Blake, A. J.; Wilson, C. *Dalton Trans.* **²⁰⁰³**, 1053-1055.

⁽²⁵⁾ van Loon, J.-D.; Arduini, A.; Coppi, L.; Verboom, W.; Pochini, A.; Ungaro, R.; Harkema, S.; Reinhoudt, D. N. *J. Org. Chem.* **1990**, *55*, ⁵⁶³⁹-5646.

Figure 2. Molecular structure of H₂[MeO₂O] (2a). Hydrogen atoms bound to carbon have been omitted for clarity. Selected bond distances (Å) and angles (deg): O(1)-C(1) 1.382(1), O(2)-O(8) 1.408(2), O(2)-C(18) 1.452- $(3), O(1) \cdots O(2)$ 3.039(2), $O(2) \cdots H(22)$ 2.18, $C(8)-O(2)-C(18)$ 113.0(2), $C(6)-C(7)-C(9)$ 111.9(1), $O(1)\cdots O(2)\cdots O(1')$ 83.79(1), $O(1)-H(22)\cdots$ O(2) 163.

Scheme 2

conformation adopted by the triphenol $H_3[^R O_3]$, in which the corresponding arrangement in $H_3[^RO_3]$ is linear.^{6b}

Synthesis of Zirconium Complexes. To probe the coordination ability of the anisole-diphenoxide ligands, we carried out the transmetalation reaction of $Li₂[{}^{R}O₂O]$ with $ZrCl₄$ (Scheme 2). Addition of an Et₂O solution of $Li₂[{}^{R}O₂O]$ to ZrCl₄ in toluene/THF at -78 °C and heating to 60 °C overnight afforded $[^{R}O_{2}O]ZrCl_{2}thf$ ($R = Me$ (**3a**), $'^{R}Bu$ (**3b**))
as a colorless solid (**3a** 78% vield: **3b** 64%). Upon as a colorless solid (**3a**, 78% yield; **3b**, 64%). Upon dissolution in toluene/hexane, the THF adduct **3** gradually converted into THF-free **4**. Starting from **3b**, THF-free **4** could be isolated as colorless crystals. An X-ray study revealed **4** to be dimeric $\{[^{tBu}O_2O]ZrCl_2\}_2$ (vide infra). In agreement with the presence of a monomer-dimer equilibrium, the interconversion of **3** into **4** was shown to be reversible. Exposure of the colorless solid **4** to THF and evaporation of the solvent led to the clean formation of **3b**. For the preparation of **4**, we also made use of a sequence reaction in which initially $Zr(NEt₂)₄$ was reacted in toluene with 1 equiv of $H_2[I^{Bu}O_2O]$, followed by the evaporation of $NEt₂H$ and subsequent addition of excess Me₃SiCl.

Crystals of THF adduct **3a** were grown from a saturated toluene solution containing a small amount of THF and analyzed by single-crystal X-ray diffraction (Figure 3). The

Figure 3. Molecular structure of $[\text{MeO}_2O]ZrCl_2(thf)$ (3a). All of the hydrogen atoms have been omitted for clarity. Selected bond distances (Å) and angles (deg): Zr-Cl(1) 2.422(2), Zr-Cl(2) 2.491(1), Zr-O(1) 1.970- (3) , Zr-O(2) 2.250(3), Zr-O(3) 1.950(3), Zr-O(4) 2.287(3), Cl(1)-Zr-Cl(2) 90.56(5), O(1)-Zr-O(2) 85.6(1), O(1)-Zr-O(3) 101.4(1), O(2)- $Zr-O(3)$ 92.4(1), $Cl(1)-Zr-O(2)$ 163.52(9), $Cl(2)-Zr-O(1)$ 161.5(1), $O(3)$ -Zr-O(4) 170.8(1), C(8)-O(2)-C(32) 113.8(3), Zr-O(1)-C(1) 173.2(3), Zr-O(2)-C(8) 113.1(2), Zr-O(3)-C(15) 159.4(2).

coordination geometry at zirconium is distorted octahedral, including the $Zr-O(anisole)$ interaction of 2.250(3) Å. The tridentate $[{}^{Me}O_2O]$ ligand facially caps the metal in a U-shaped conformation, with the remainder of the coordination sphere occupied by one THF molecule and two mutually *cis*-chloride ligands. The obtuse $Zr-O(phenoxide)-C_{isno}$ angles (173.2(3), 159.4(2)^o) are typical of d^0 metal phenoxide complexes, and the $Zr-O(1)$ and $Zr-O(3)$ distances of 1.970(3) and 1.950(3) \AA are in agreement with those of the zirconium phenoxide complexes. $26-28$ The THF ligand is trans to the phenoxide oxygen $O(3)$ with an angle of $170.8(1)$ °, and the $Zr-O(THF)$ distance of 2.287(3) Å is slightly elongated relative to the $Zr-O(anisole)$ distance. The ready loss of the THF ligand from **3** to form **4** could be attributable to the trans labilizing ability of the phenoxide group. The Zr-Cl bond distances of 2.422(2) and 2.491(1) Å are within the previously found ranges.27 The ¹ H NMR spectra of **3a** and **3b** show a broadened AB system for the methylene protons and one single resonance for the ortho *^t* Bu groups, indicating an average C_s symmetry and broad resonances for THF. This suggests reversible dissociation of coordinated THF on the NMR time scale. When an excess of THF was added to a solution of 2 in C_6D_6 , only one set of average resonances for the THF protons was observed.

The zirconium centers in dimeric **4** (Figure 4) also possess

^{(26) (}a) Caselli, A.; Giannini, L.; Solari, E.; Floriani, C.; Re, N.; Chiesi-Villa, A.; Rizzoli, C. *Organometallics* **¹⁹⁹⁷**, *¹⁶*, 5457-5469. (b) Chisholm, M. H.; Huang, J.-H.; Huffman, J. C.; Streib, W. E.; Tiedtke, D. *Polyhedron* **¹⁹⁹⁷**, *¹⁶*, 2941-2949.

⁽²⁷⁾ Toupance, T.; Dubberley, S. R.; Rees, N. H.; Tyrrell, B. R.; Mountford, P. *Organometallics* **²⁰⁰²**, *²¹*, 1367-1382.

^{(28) (}a) Latesky, S. L.; McMullen, A. K.; Niccolai, G. P.; Rothwell, I. P.; Huffman, J. C. *Organometallics* **¹⁹⁸⁵**, *⁴*, 902-908. (b) Thorn, M. G.; Etheridge, Z. C.; Fanwick, P. E.; Rothwell, I. P. *Organometallics* **¹⁹⁹⁸**, *¹⁷*, 3636-3638. (c) Natrajan, L. S.; Wilson, C.; Okuda, J.; Arnold, P. L. *Eur. J. Inorg. Chem.* **²⁰⁰⁴**, 3724-3732. (d) Tshuva, E. Y.; Goldberg, I.; Kol, M.; Goldschmidt, Z. *Organometallics* **2001**, *²⁰*, 3017-3028.

Figure 4. Molecular structure of $[{}^{Bu}O_2O]_2Zr_2Cl_4$ (4). All of the hydrogen atoms have been omitted for clarity. Selected bond distances (Å) and angles (deg): $Zr(1) \cdots Zr(2)$ 4.109(1), $Zr(1) - Cl(1)$ 2.412(2), $Zr(1) - Cl(2)$ 2.623- $(2), Zr(1)-Cl(3)$ 2.638 $(2), Zr(2)-Cl(2)$ 2.630 $(2), Zr(2)-Cl(3)$ 2.650 $(2), Zr (2)-Cl(4)$ 2.412 (2) , $Zr(1)-O(1)$ 1.921 (5) , $Zr(1)-O(2)$ 2.382 (3) , $Zr(1)-$ O(6) 1.937(3), Zr(2)-O(3) 1.940(3), Zr(2)-O(4) 1.917(4), Zr(2)-O(5) 2.366(3), Cl(2)-Zr(1)-Cl(3) 77.68(5), Cl(2)-Zr(2)-Cl(3) 77.36(5), Zr- $(1)-Cl(2)-Zr(3)$ 102.95(6), $Zr(1)-Cl(3)-Zr(2)$ 102.00(6), $Cl(1)-Zr(1)-Zr(3)$ Cl(3) 155.74(4), Cl(2)-Zr(1)-O(1) 168.2(1), O(2)-Zr(1)-O(6) 170.53(18), $Cl(3)-Zr(2)-Cl(4)$ 155.17(5), $Cl(2)-Zr(2)-O(4)$ 168.3(1), $O(3)-Zr(2)-$ O(5) 170.2(2), C(8)-O(2)-C(35) 108.1(3), C(43)-O(5)-C(70) 110.4(4), $Zr(1)-O(1)-C(1)$ 166.0(4), $Zr(1)-O(2)-C(8)$ 129.2(2), $Zr(1)-O(6)-C(50)$ 175.9(4), $Zr(2)-O(3)-C(15)$ 173.8(4), $Zr(2)-O(4)-C(36)$ 167.8(4), $Zr (2)-O(5)-C(43)$ 128.8(3).

a distorted octahedral geometry but this involves bridging chloride ligands forming a planar $Zr_2(\mu-\text{Cl})_2$ core. The [*t*BuO2O] ligands span two metals in an S-shaped conformation. It is noteworthy that the overall dimeric structure of **4** is different from those of the triphenoxide $[{}^{R}O_3]$ complexes, in which the complexes possess bridging central phenoxide groups of $[{}^{R}O_3]$ ligands rather than dimerizing via the chloride ligands.^{21,29} This reflects a greater tendency for the central phenoxide group of the $[^{R}O_{3}]$ ligand to act as a bridging ligand. Each zirconium center is coordinated to three oxygen donors and one terminal and two bridging chloride ligands. Two oxygen donors (phenoxide and anisole) are provided by one $\lceil^{tBu}O_2O\rceil$ ligand, whereas the third oxygen donor (phenoxide) arises from the other. These three oxygen atoms are arranged meridionally in each zirconium center. The molecule has approximate C_2 symmetry with the axis passing through two bridging chloride ligands. The geometrical parameters around the zirconium centers are within the expected ranges. The Zr-O(anisole) distances of 2.382- (3) and 2.366(3) Å in **4** are substantially longer than those found in **3a**. This elongation can be accounted for by the difference between the trans influences between phenoxide and chloride ligands. The 1H NMR spectrum of **4** is consistent with the solid-state structure. **4** exhibits two pairs of doublets due to methylene protons, which are diagnostic of an asymmetric environment adopted by the $[^{R}O_{2}O]$ ligand.

Dichloride **3** complexes are useful precursors to zirconium phenoxide derivatives, and the synthesis of zirconium

compounds derived from **3** is summarized in Scheme 3. Dialkyl compounds were prepared from a cold solution of **3** in toluene/THF and 2 equiv of Grignard reagents in Et_2O . Reaction of $3a$ with 2 equiv of MeMgBr afforded $[{}^{\text{Me}}O_2O]$ - $ZrMe₂(thf)$ (5) as a colorless solid in 88% yield. In a manner like that of precursor **3**, the coordinated THF is labile in solution, the THF protons appearing as broad resonances in the NMR spectra. The ¹ H NMR spectrum of **5** shows a singlet for the ortho *^t* Bu groups (1.54 ppm), two singlets for the para Me groups (1.50 and 2.31 ppm in a 1:2 ratio), and a pair of doublets for the methylene protons of the $\left[^{R}O_{2}O\right]$ ligand (3.21 and 4.22 ppm, $J = 13.2$ Hz) along with two singlets for inequivalent $Zr-Me$ groups (0.79 and 1.17 ppm), consistent with C_s symmetry in solution on the NMR time scale. In the ${}^{13}C{^1H}$ NMR spectrum, the signals for the methyl groups on zirconium are coincidentally overlapping and appear as a broad peak at 44.9 ppm. On the basis of the X-ray study of **3a**, we presume that **5** has a facial geometry with the $\left[\text{MeO}_2\text{O}\right]$ ligand adopting a U-shaped conformation (Scheme 3).

When the more sterically demanding PhCH₂MgCl and Me3SiCH2MgCl were used instead of MeMgBr, the THFfree alkyl complexes $[^{R}O_{2}O]Zr(CH_{2}Ph)_{2}$ (R = Me (6a), R $=$ 'Bu (6b)) and $\binom{B_u}{0.2}$ $\frac{I}{2}$ $\frac{I}{2}$ as a light-yellow solid and a colorless solid, respectively. Benzyl complexes **6a** and **6b** were also formed quantitatively by the protonolysis reactions of $H_2[{}^R_2O_2O]$ with $Zr(CH_2Ph)_4$ in toluene at 0 °C. Products **6** and **7** were isolated base-free as shown by NMR spectroscopy. The NMR data of **6** and **7** reveal two inequivalent alkyl groups on zirconium. In the solid-state (vide infra), two phenoxide rings are not equivalent, but in solution the resonances for a C_s symmetric $[{}^RO_2O]$ ligand environment are seen, although two broad resonances assigned to the methylene groups of the $[^{R}O_{2}O]$ ligand indicate a fluxional process in solution. Indeed, upon cooling of the NMR sample, a partial decoalescense of some of the ligand resonances is seen, most notably for these methylene resonances. However, this fluxional process could not be frozen out even at -40 °C. We assume that the fluxional process involves a phenoxide ring exchange via an intermediate having the U-shaped $[^{R}O_{2}O]$ ligand.

X-ray quality crystals of **6a** and **7** were obtained from their toluene/THF solutions. Because their structures are found (29) Matsuo, T.; Kawaguchi, H.; Sakai, M. *J. Chem. Soc., Dalton Trans.*
toluene/THF solutions. Because their structures are found toluene/THF solutions. Because th

²⁰⁰², 2536-2540.

Figure 5. Molecular structure of $[\text{MeO}_2O]Zr(CH_2Ph)_2$ (6a). All of the hydrogen atoms have been omitted for clarity. Selected bond distances (Å) and angles (deg): Zr-O(1) 1.987(2), Zr-O(2) 2.225(2), Zr-O(3) 1.994- $(2), Zr-C(33) \, 2.261(3), Zr-C(40) \, 2.253(3), Zr \cdots C(34) \, 3.000(3), Zr \cdots C(41)$ 3.180(3), O(1)-Zr-O(2) 77.05(10), O(1)-Zr-O(3) 154.60(11), O(2)-Zr-O(3) 81.85(10), O(2)-Zr-C(33) 116.50(12), O(2)-Zr-C(40) 136.82(12), $C(33)-Zr-C(40)$ 106.61(15), $Zr-O(1)-C(1)$ 146.2(2), $Zr-O(2)-C(8)$ 118.5(2), Zr-O(3)-C(15) 172.1(2), Zr-C(33)-C(34) 104.5(2), Zr-C(40)- C(41) 114.4(2), C(8)-O(2)-C(32) 114.9(3).

to be similar,30 that of **6a** is discussed in detail. The molecular structure of **6a** is presented in Figure 5. The compound is a distorted trigonal bipyramidal species with the S-shaped $\lceil^{Me}O_2O\rceil$ ligand adopting an approximately meridional coordination mode. The two phenoxide groups occupy the apical positions $[O(1) - Zr - O(3) = 154.6(1)]$, and they are bent away from the side of the molecule that contains the anisole C(32) atom, as judged by the difference between $O(1)$ -Zr-C(33) and $O(1)$ -Zr-C(40) angles (12.1 °). The Zr-O bond distances are similar to the corresponding distances of **3a**. The two benzyl groups are bound to the metal in an η^1 fashion with the Zr-C-C_{ipso} angles of 104.5(2) and 114.4(2)°, and the Zr-C distances of 2.261(3) and 2.253(3) Å are comparable to those observed in other zirconium benzyl complexes incorporating phenoxide ligands.^{27,28} The lack of any η^2 character in the benzyl groups indicates that the zirconium center supported by the $[{}^{R}O_{2}O]$ ligand is not particularly electrophilic.

Hydride complexes containing hard, ancillary *π*-donor ligands such as phenoxides and siloxides have been found to display unique reactivity, for example undergoing catalytic all-cis hydrogenation of polynuclear aromatics and participating in the activation of small molecules.³¹ We have previously reported the synthesis of the dihydride-benzylidene dizirconium complex $[^{R}O_{2}O]_{2}Zr_{2}(\mu-H)_{2}(\mu-CHPh)$ via the hydrogenation of benzyl **6**. 18b In view of the success in the synthesis of the dihydride-benzylidene complex, we were interested in testing the versatility of the $[^{R}O_{2}O]$ ligand

in stabilizing other zirconium hydride species. Methyl **5** was analogously treated under an atmosphere of $H₂$, but no reaction occurred according to 1H NMR spectroscopy. This implies that the THF coordination prevents the complex from undergoing hydrogenation of the $Zr-C$ bonds. On the other hand, prolonged exposure of THF-free 7 to H_2 resulted in a mixture of Me4Si and uncharacterized zirconium compounds.

8

Some early-transition-metal hydrides have been synthesized by the addition of hydride reagents such as $LiBHEt₃.³²$ Treatment of the chloride $3b$ with LiBHEt₃ in THF afforded $[L_2(thf)_4Cl]{\{rBuO}_3|Zr\}_2(\mu-H)_3}$ (8) as colorless crystals in 25% isolated yield (Scheme 4). Attempts to identify any other metal-containing products of this reaction were unsuccessful, but the generation of **8** was reproducible. Previously, we have found that the reaction of $[^{tBu}O₃]ZrCl(thf)₂$ with LiBHEt₃ gave 8 in 59% yield.³³ Demethylation associated with the formation of **8** is frequently observed in the interaction of methoxy-calix[4]arenes with early transition metals.34 We suppose that coordination of the anisole group to zirconium facilitates demethylation of the $[^{R}O_{2}O]$ ligand via nucleophilic attack by the hydride reagent.

Summary. The linear triphenol H_3 [R O₃] was found to undergo mono-deprotonation and mono-*O*-methylation, in which the central phenol unit was selectively functionalized to afford **1** and **2**. The readily available diphenol-anisole **2** provides a useful entry point to organometallic and coordination complexes of zirconium. A series of five- or sixcoordinate derivatives have been prepared and crystallographically characterized. The preparation of hydride complexes through the addition of the hydride reagent LiBHEt₃ led to demethylation of the $[^{R}O_{2}O]$ ligand, yielding the trihydride-bridged dizirconium complex supported by the triphenoxide $[^{R}O_{3}]$ ligand. The anisole group of the $[^{R}O_{2}O]$ ligand not only functions as a weakly binding group, but it can also undergo facile demethylation to generate the corresponding $[{}^{R}O_3]M$ fragment. We are continuing to explore the early-transition-metal chemistry of the $[{}^{R}O_{2}O]$

⁽³⁰⁾ Crystal data for 7: formula = $C_{50}H_{76}O_3Si_2Zr$; M = 872.54; mono-
clinic; space group, P_{21}/n (no. 14); $a = 11.453(6)$, $b = 18.622(9)$, c $= 24.540(13)$ Å, $\beta = 104.754(7)$ °, $V = 5061(4)$ Å³; $Z = 4$; $D_{\text{caled}} =$ 1.145 g cm⁻³; Mo K α = 3.009 cm-1; collected reflns = 39 998; unique reflns = 11 485; parameters = 542; R1[I > 2 $\sigma(I)$] = 0.0883; unique reflns = 11 485; parameters = 542; R1[$I > 2\sigma(I)$] = 0.0883;
wR2 (all) = 0.1933; GOF = 1.039; peak/hole (e Å⁻³) = 6.64/-3.10.
Additional crystallographic data are given in the Supporting Informa-Additional crystallographic data are given in the Supporting Information (CIF format).

^{(31) (}a) Steffey, B. D.; Chesnut, R. W.; Kerschner, J. L.; Pellechia, P. J.; Fanwick, P. E.; Rothwell, I. P. *J. Am. Chem. Soc.* **¹⁹⁸⁹**, *¹¹¹*, 378- 380. (b) Miller, R. L.; Toreki, R.; LaPointe, R. E.; Wolczanski, P. T.; Van Duyne, G. D.; Roe, D. C. *J. Am. Chem. Soc.* **¹⁹⁹³**, *¹¹⁵*, 5570- 5588. (c) Chisholm, M. H. *Chem. Soc. Re*V*.* **¹⁹⁹⁵**, *²⁴*, 79-87.

^{(32) (}a) Wielstra, Y.; Gambarotta, S; Spek, A. L. *Organometallics* **1990**, *⁹*, 572-577. (b) Berno, P.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. *J. Chem. Soc., Chem. Commun.* **¹⁹⁹¹**, 109-110. (c) Dawson, D. M.; Meetsma, A.; Roedelof, J. B.; Teuben, J. H. *Inorg. Chim. Acta* **1997**,

⁽³³⁾ Matsuo, T.; Kawaguchi, H. Organometallics 2003, 22, 5379-5381. (33) Matsuo, T.; Kawaguchi, H. *Organometallics* **²⁰⁰³**, *²²*, 5379-5381. (34) (a) Castellano, B.; Solari, E.; Floriani, C.; Re, N.; Chiesi-Villa, A.;

Rizzoli, C. *Chem.* $-Eur. J.$ 1999, 5, 722-737. (b) Giannini, L.; Caselli, A.; Solari, E.; Floriani, C.; Chiesi-Villa, A.; Rizzoli, C.; Re, N.; Sgamellotti, A. *J. Am. Chem. Soc.* **¹⁹⁹⁷**, *¹¹⁹*, 9198-9210.

Experimental Section

General Procedures. All of the manipulations of air- and/or moisture-sensitive compounds were performed under an inert atmosphere of argon or dinitrogen using standard Schlenk-line techniques. All of the dried solvents and chemicals commercially available were used as received without further purification. Linearlinked phenol trimers $H_3[^R O_3]$ were synthesized according to the literature procedures.^{6b,28} Deuterated benzene (benzene- d_6 , C_6D_6) and toluene (toluene- d_8 , C_7D_8) were dried and degassed over a potassium mirror in vacuo prior to use. Deuterated chloroform (chloroform-*d*1, CDCl3) was distilled from calcium hydride prior to use. Air- and/or moisture-sensitive compounds were stored and weighted in a glovebox (MBraun Labmaster 130) filled with dinitrogen. Reactions in small quantities were performed in a glovebox. Nuclear magnetic resonance (NMR) measurements were carried out on JEOL Lambda-500, JNM-GX500, and LA-400 spectrometers at room temperature. Chemical shifts (*δ*) are given in parts per million. Chemical shifts (δ) for ¹H NMR spectra were referenced to residual protic solvents peaks (residual C_6D_5H in C_6D_6 , ${}^{1}H(\delta) = 7.15$; residual C₇D₇H in C₇D₈, ${}^{1}H(\delta) = 2.09$; residual CHCl₃ in CDCl₃, ¹H(δ) = 7.24). The absolute values of the coupling constants are given in Hertz (Hz), regardless of their signs. Multiplicities are abbreviated as singlet (s), doublet (d), triplet (t), quartet (q), and broad (br). Elemental analyses (C, H, and N) were measured using YANACO MT-6 and MSU-32 microanalyzers.

Synthesis of Li $\{H_2[MeO_3]\}\{Et_2O\}_2$ (1a). A solution of butyllithium (1.58 M in hexane, 1.35 mL, 2.13 mmol) was added dropwise to a solution of $H_3[^{Me}O_3]$ (1.00 g, 2.17 mmol) in diethylether (30 mL) at 0 °C, resulting in the immediate formation of a white precipitate. Evaporation of volatiles afforded $Li\{H_2-H_3\}$ $[MeO_3]$ }(Et₂O)₂ (1a) as a colorless solid in a quantitative yield. ¹H NMR (500.00 MHz, C_6D_6) δ 0.92 (br. s, 9 H, *'Bu*), 1.09 (t, $J = 7.0$
Hz, 12 H, Ft, O), 1.51 (br. s, 9 H, *'Bu*), 1.76 (br. s, 3 H, Me), 2.00 Hz, 12 H, Et₂O), 1.51 (br. s, 9 H, ^{*r*}Bu), 1.76 (br. s, 3 H, Me), 2.00 (br. s, 3 H, Me), 2.23 (br. s, 3 H, Me), 3.24 (q, $J = 7.0$ Hz, 8 H, Et₂O), 3.61 (br. s, 1 H), 3.9∼4.2 (overlapping, br. s, 2 H), 4.52 (br. s, 1 H), 4.96 (br. s, 1 H), 5.87 (br. s, 1 H), 6.58 (br. s, 1 H), 6.8∼7.1 (overlapping, br. s, 5 H). 7Li NMR (194.25 MHz, C6D6) *δ* 2.06. Anal. Calcd for C₃₉H₅₉LiO₅: C, 76.19; H, 9.67. Found: C, 75.54; H, 9.30.

Synthesis of $Li{H_2}$ **^{** BuO_3 **}}** $(Et_2O)_2$ **(1b). Addition of butyllithium** $(1.58 \text{ M} \text{ in hexane}, 2.5 \text{ mL}, 4.00 \text{ mmol})$ to H_3 ^{[*t*Bu}O₃] (2.01 g, 4.00 mmol) in diethylether (Et₂O, 50 mL) at 0 $^{\circ}$ C gave a white precipitate. Workup similar to that above yielded $Li\{H_2[^{tBu}O_3]\}$ - $(Et₂O)₂$ (1b) as a white precipitate in quantitative yield. ¹H NMR (500.00 MHz, C6D6) *δ* 0.84 (br. s, 9 H, *^t* Bu), 0.96 (br. s, 9 H, *^t* Bu), 1.10 (t, $J = 7.0$ Hz, 12 H, Et₂O), 1.56 (br. s, 9 H, *'Bu*), 2.23 (br. s, 3 H, Ma), 2.21 (br. s, 3 H, Ma), 3.25 (q, $I = 7.0$ Hz, 8 H, Et₂O) s, 3 H, Me), 2.31 (br. s, 3 H, Me), 3.25 (q, $J = 7.0$ Hz, 8 H, Et₂O), 3.67 (br. s, 1 H), 4.0∼4.8 (overlapping, br. s, 3 H), 5.07 (br. s, 1 H), 5.80 (br. s, 1 H), 6.80 (br. s, 1 H), 6.85∼7.25 (overlapping, br. s, 4 H), 7.30 (br. s, 1 H). ⁷Li NMR (194.25 MHz, C₆D₆) δ 2.18. Anal. Calcd for $C_{42}H_{65}LiO_5$: C, 76.79; H, 9.97. Found: C, 76.70; H, 9.71.

Synthesis of H₂[MeO₂O] (2a). A mixture of H₃[MeO₃] (5.01 g, 10.9 mmol), potassium carbonate (K_2CO_3 , 775 mg, 5.61 mmol), and methyl *p*-toluenesulfonate (MeOTs, 2.10 g, 11.3 mmol) in CH₃-CN (250 mL) was refluxed overnight. The mixture was poured into dichloromethane (CH_2Cl_2) , hydrolyzed with dilute hydrochloric acid, and extracted with CH_2Cl_2 . The organic layer was washed with water and dried over anhydrous sodium sulfate. After filtration, the solvent was removed in vacuo to give the crude product. Recrystallization from hexane/CH₂Cl₂ gave H₂[MeO₂O] (2a) as colorless crystals (5.09 g, 10.7 mmol, 98% yield). 1H NMR (500.00

MHz, CDCl₃) d 1.32 (s, 18 H, ^{*t*Bu), 2.16 (s, 3 H, Me), 2.22 (s, 6}) H, Me), 3.83 (s, 4 H, CH2), 4.00 (s, 3 H, OMe), 6.32 (br. s, 2 H, OH), 6.88 (s, 2 H, ArH), 6.91 (s, 2 H, ArH), 6.93 (s, 2 H, ArH). Anal. Calcd for $C_{32}H_{42}O_3$: C, 80.97; H, 8.92. Found: C, 80.49; H, 8.83.

Synthesis of H_2 **^{[***Bu***}O₂O] (2b). The same procedure as used for** $H_2[{}^{Me}O_2O]$ (2b) was followed. Reaction of $H_3[{}^{tBu}O_3]$ (10.0 g, 19.9 mmol), K_2CO_3 (1.40 g, 10.1 mmol), and MeOTs (3.95 g, 21.2) mmol) in CH3CN (250 mL) afforded colorless crystals of **2b** in 98% yield (10.1 g, 19.5 mmol). ¹H NMR (500.00 MHz, CDCl₃) δ 1.18 (s, 9 H, *^t* Bu), 1.34 (s, 18 H, *^t* Bu), 2.22 (s, 6 H, Me), 3.87 (s, 4 H, CH2), 3.98 (s, 3 H, OMe), 6.34 (br.s, 2 H, OH), 6.87 (s, 2 H, ArH), 6.93 (s, 2 H, ArH), 7.10 (s, 2 H, ArH). Anal. Calcd for C35H48O3: C, 81.35; H, 9.36. Found: C, 81.15; H, 9.44.

Synthesis of Li₂[RO₂O]. In a typical reaction, a solution of butyllithium (1.56 M in hexane, 5.4 mL, 8.4 mmol) was added dropwise to $2a$ (1.95 g, 4.11 mmol) in Et₂O (70 mL) at 0 °C. The resulting colorless solutions of $Li_2[MeO_2O]$ and analogously prepared $Li_2[^{tBu}O_2O]$ were used in the synthesis of **3a** and **3b** without further purification, respectively.

Synthesis of $\left[\text{MeO}_2\text{O}\right] \text{ZrCl}_2(\text{thf})$ **(3a).** To a slurry of ZrCl_4 (1.01) g, 4.33 mmol) in toluene (40 mL)/THF (10 mL) at -78 °C was added a Et₂O (70 mL) solution of $Li_2[^{Me}O_2O]$ (4.11 mmol). The mixture was allowed to warm up to room temperature, and then volatiles were removed in vacuo to give a white solid. The solid was dissolved in toluene (60 mL)/THF (10 mL) and stirred overnight at 60 °C. The mixture was centrifuged to remove an insoluble material. The supernatant was evaporated to dryness to yield a solid, which was washed with toluene/hexane to give 2.27 g of **3a** as a colorless solid (3.21 mmol, 78% yield). 1H NMR $(500.00 \text{ MHz}, \text{C}_6\text{D}_6) \delta$ 1.21 (br, 4 H, THF), 1.59 (s, 3 H, Me), 1.67 (br. s, 18 H, *^t* Bu), 2.25 (br. s, 6 H, Me), 3.24 (br. s, 2 H, CH₂), 3.91 (s, 3 H, OMe), 4.23 (br. s, 6 H, overlapping CH₂ and THF), 6.75 (br. s, 4 H, ArH), 6.94 (s, 2 H, ArH). Anal. Calcd for C36H48Cl2O4Zr: C, 61.17; H, 6.84. Found: C, 61.04; H, 7.24.

Synthesis of $[^{tBu}O_2O]ZrCl_2(thf)$ **(3b).** A slurry of $ZrCl_4$ (1.02 g, 4.38 mmol) in toluene (30 mL)/THF (10 mL) was treated with $Li_2[^{tBu}O_2O]$ (4.37 mmol) in Et₂O (100 mL) as described for the synthesis of **3a**. The product **3b** was isolated as a colorless solid (2.09 g, 2.79 mmol, 64% yield). ¹H NMR (500.00 MHz, C₆D₆) δ 0.91 (s, 9 H, *^t* Bu), 1.25 (br, 4 H, THF), 1.58 (br. s, 18 H, *^t* Bu), 2.26 (br. s, 6 H, Me), 3.39 (br. s, 2 H, CH2), 3.94 (s, 3 H, OMe), 4.26 (br. s, 6 H, overlapping $CH₂$ and THF), 6.99 (s, 2 H, ArH), 7.16 (br. s, 4 H, ArH). Anal. Calcd for $C_{39}H_{54}Cl_2O_4Zr$: C, 62.54; H, 7.27. Found: C, 62.65; H, 6.92.

Synthesis of $\{[^{tBu}O_2O]ZrCl_2\}$ (4). To a toluene (80 mL) solution of $H_2[^{tBu}O_2O]$ (2b) (1.00 g, 1.94 mmol) in toluene (80 mL) at 0 °C was added $Zr(NEt₂)₄$ (0.72 mL, 746 mg, 1.96 mmol). The mixture was stirred at room temperature overnight, and then volatiles were evaporated to leave a white solid. The solid was dissolved in toluene (60 mL) and treated with Me₃SiCl (1.0 mL, 7.87 mmol). The mixture was stirred at room temperature for 2 days. The reaction mixture was centrifuged to remove an insoluble material. Removal of volatiles in vacuo left a colorless solid, which was crystallized from toluene/hexane to afford **4** as colorless crystals $(445 \text{ mg}, 0.33 \text{ mmol}, 34\% \text{ yield})$. ¹H NMR (500.00 MHz, C₆D₆) δ 1.226 (s, 18 H, *^t* Bu), 1.230 (s, 18 H, *^t* Bu), 1.48 (s, 18 H, *^t* Bu), 2.13 $(s, 6$ H, Me), 2.30 $(s, 6$ H, Me), 3.31 $(d, J = 13.7$ Hz, 2 H, CH₂), 3.40 (d, $J = 14.9$ Hz, 2 H, CH₂), 3.64 (s, 6 H, OMe), 5.34 (d, $J =$ 13.7 Hz, 2 H, CH₂), 5.58 (d, $J = 14.9$ Hz, 2 H, CH₂), 6.63 (s, 2 H, ArH), 6.87 (s, 2 H, ArH), 6.90 (s, 2 H, ArH), 7.03 (d, $J = 2.2$ Hz, 2 H, ArH), 7.05 (s, 2 H, ArH), 7.13 (d, *^J*) 2.2 Hz, 2 H, ArH).

 a *R*1 = \sum ||Fo| - |Fc||/ \sum |Fo|. *b* wR2 = $[\sum$ (w(Fo² - Fc²)²/ \sum w(Fo²)²)^{1/2}.

Anal. Calcd for $C_{70}H_{92}Cl_{4}O_{6}Zr_{2} \cdot 2C_{6}H_{14}$: C, 64.54; H, 7.93. Found: C, 64.89; H, 7.86.

Synthesis of $\left[\text{MeO}_2\text{O}\right]$ **ZrMe₂(thf) (5).** A solution of MeMgBr $(3.0 M in Et₂O, 0.8 mL, 2.4 mmol)$ was added dropwise to $3a(844)$ mg, 1.19 mmol) in toluene (30 mL)/THF (5 mL) at -78 °C. The colorless solution gradually turned light-yellow. The mixture was allowed to warm up to room temperature and stirred for 2 h. The solvent was removed in vacuo to leave a colorless solid. The residue was extracted into toluene (50 mL) and centrifuged to remove an insoluble material. The supernatant was evaporated to dryness, and the residue was washed with hexane, yielding 699 mg of **5** as a colorless solid (1.05 mmol, 88%). ¹H NMR (500.00 MHz, C_6D_6) *δ* 0.79 (s, 3 H, ZrMe), 1.17 (s, 3 H, ZrMe), 1.25 (br. s, 4 H, THF), 1.50 (s, 3 H, Me), 1.54 (s, 18 H, *^t* Bu), 2.31 (s, 6 H, Me), 3.21 (d, $J = 13.2$ Hz, 2 H, CH₂), 3.48 (s, 3 H, OMe), 3.87 (br. s, 4 H, THF), 4.22 (d, $J = 13.2$ Hz, 2 H, CH₂), 6.71 (s, 2 H, ArH), 7.00 (s, 2 H, ArH), 7.19 (s, 2 H, ArH). 13C{1H} NMR (100.40 MHz, C6D6): *δ* 25.1 (THF), 44.9 (br. ZrMe), 65.6 (OMe), 71.1 (THF). Anal. Calcd for C₃₈H₅₄O₄Zr: C, 68.52; H, 8.17. Found: C, 68.09; H, 8.31.

Synthesis of $\left[\text{MeO}_2\text{O}\right]\text{Zr}(\text{CH}_2\text{Ph})_2$ **(6a). Method A.** A solution of PhCH₂MgCl (1.0 M in Et₂O, 1.4 mL, 1.4 mmol) was added dropwise to a colorless solution of **4a** (0.50 g, 0.71 mmol) in toluene (30 mL)/THF (5 mL) at -78 °C. The solution gradually turned yellow, and it was allowed to warm up to room temperature. After 2 h of stirring, the solvent was evaporated in vacuo. The residue was extracted into toluene (60 mL) and centrifuged to remove an insoluble material. The supernatant was evaporated to dryness, and the residue was washed with hexane, yielding 0.45 g of **6a** as a light-yellow solid (0.60 mmol, 85%).

Method B. A solution of toluene (50 mL) and $H_2[{}^{Me}O_2O]$ (2a) (1.41 g, 2.97 mmol) was added to a yellow-orange solution of tetrabenzylzirconium $(Zr(CH_2Ph)_4, 1.35 g, 2.96 mmol)$ in toluene (60 mL) at 0 °C. The solution immediately turned light in color. After the mixture was allowed to warm up to room temperature and stirred for 2 h, the solvent was removed in vacuo to afford the

product as a light-yellow solid in quantitative yield. Recrystallization from toluene/hexane gave 1.73 g of **6a** as light-yellow crystals (2.32 mmol, 78% yield).

Data for 6a. 1H NMR (500.00 MHz, C6D6): *δ* 1.68 (s, 18 H, *t* Bu), 1.71 (s, 3 H, Me), 2.29 (s, 6 H, Me), 2.67 (s, 3 H, OMe), 2.77 (br.s, 2 H, ZrCH₂), 3.17 (br.s, 2 H, ZrCH₂), 3.26 (d, $J = 14.0$ Hz, 2 H, CH₂), 3.44 (d, $J = 14.0$ Hz, 2 H, CH₂), 6.58 (s, 2 H, ArH), 6.75 (t, $J = 7.5$ Hz, 1 H, benzyl(para)), 6.84 (t, $J = 7.5$ Hz, 1 H, benzyl(para)), 6.91 (d, *J* = 2.0 Hz, 2 H, ArH), 6.97∼7.13 (overlapping m, 6 H, benzyl(meta), benzyl(ortho)), 7.19 (d, $J =$ 2.0 Hz, 2 H, ArH), 7.30 (d, $J = 7.5$ Hz, 2 H, benzyl(ortho)). ¹³C- 1H NMR (100.40 MHz, C₆D₆): δ 68.0 (OMe), 69.3 (ZrCH₂), 76.0 (ZrCH₂). Anal. Calcd for C₄₆H₅₄O₃Zr·C₆H₁₄: C, 75.21; H, 8.34. Found: C, 75.19; H, 8.40.

Synthesis of $[{}^{tBu}O_2O]Zr(CH_2Ph)_2$ (6b). Method A. 6b was formed by a procedure analogous to that for **6a** in Method A, with PhCH₂MgCl (1.0 M in Et₂O, 2.4 mL, 2.4 mmol) and 6b (875 mg, 1.17 mmol) in toluene (45 mL)/THF (8 mL) at -78 °C. The volatiles were then removed in vacuo to leave a light-yellow solid. The residue was extracted into toluene (50 mL). The resulting solution was centrifuged and evaporated to dryness. Washing with a minimal amount of hexane yielded 773 mg of **6b** as a light-yellow solid (0.98 mmol, 84%).

Method B. 6b was formed by a procedure analogous to that for **6a** in Method B, with $Zr(CH_2Ph)_4$ (1.75 g in 80 mL of toluene, 3.84 mmol), and H2[*^t*BuO2O] (**2b**) (1.75 g in 60 mL of toluene, 3.84 mmol) at 0 °C. After evaporation of the volatiles, **6b** was obtained as a light-yellow solid in quantitative yield. The product was crystallized from hexane (2.15 g, 2.73 mmol, 72%).

Data for 6b. ¹H NMR (500.00 MHz, C_6D_6): δ 0.98 (s, 9 H, *t* Bu), 1.65 (s, 18 H, *^t* Bu), 2.27 (s, 6 H, Me), 2.65 (br. s, 2 H, ZrCH2), 2.71 (s, 3 H, OMe), 3.16 (br. s, 2 H, ZrCH₂), 3.37 (d, $J = 14.5$ Hz, 2 H, CH₂), 3.55 (d, $J = 14.5$ Hz, 2 H, CH₂), 6.75 (t, $J = 7.5$ Hz, 1 H, benzyl(para)), 6.87 (t, $J = 7.5$ Hz, 1 H, benzyl(para)), 6.96 (s, 2 H, ArH), 6.98∼7.13 (overlapping m, 8 H, ArH, benzyl(meta), benzyl(ortho)), 7.18 (d, $J = 2.0$ Hz, 2 H, ArH), 7.33 (d, $J = 7.5$

Hz, 2 H, benzyl(ortho)). ¹³C{¹H} NMR (100.40 MHz, C₆D₆): δ 68.0 (OMe), 71.3 (ZrCH₂), 74.9 (ZrCH₂). Anal. Calcd for C₄₉H₆₀O₃-Zr \cdot 0.5 C₆H₁₄: C, 75.22; H, 8.18. Found: C, 75.16; H, 8.01.

Synthesis of $[^{Bu}O_2O]Zr(CH_2SiMe_3)$ **₂ (7).** To 3a in toluene (60) mL) at -78 °C was added a solution of Me₃SiCH₂MgCl (1.0 M in Et₂O, 4.6 mL, 4.6 mmol). The mixture was allowed to warm up to room temperature and stirred for 6 h. The solution was centrifuged and evaporated to dryness. Recrystallization from toluene afforded 1.66 g of **7** as colorless crystals (2.13 mmol, 92% yield). 1H NMR $(500.00 \text{ MHz}, \text{C}_6\text{D}_6)$: δ -0.01 (s, 2 H, ZrCH₂Si), 0.10 (s, 9 H, SiMe₃), 0.21 (s, 9 H, SiMe₃), 0.29 (s, 2 H, ZrCH₂Si), 1.03 (s, 9 H, *t* Bu), 1.71 (s, 18 H, *^t* Bu), 2.26 (s, 6 H, Me), 3.02 (s, 3 H, OMe), 3.40∼4.10 (br, 4 H, CH2), 6.96 (s, 2 H, ArH), 7.11 (s, 2 H, ArH), 7.18 (s, 2 H, ArH). 13C{1H} NMR (100.40 MHz, C6D6): *δ* 2.7 $(SiMe₃)$, 3.2 $(SiMe₃)$, 61.7 $(ZrCH₂)$, 63.4 $(ZrCH₂)$, 66.3 (OMe) . Anal. Calcd for $C_{43}H_{68}O_3Si_2Zr$: C, 66.18; H, 8.78. Found: C, 63.73; H, 8.68. We have been unable to obtain a satisfactory elemental analysis. For example, diffraction-quality crystals of **7** consistently gave a lower-than-expected carbon analysis, even when combustion aids were used. We believe that on the basis of the NMR spectra and the X-ray crystal structure that the compound is authentic and analytically pure but that either its lability on heating or incomplete combustion is responsible for the disappointing elemental analysis.

Reaction of 3b with LiBHEt₃. A solution of LiBHEt₃ (1.0 M) in THF, 3.0 mL, 3.0 mmol) was added to a stirred solution of **3b** (621 mg, 0.83 mmol) in THF (20 mL) at -78 °C. The mixture was allowed to warm up to room temperature and stirred for 4 h. After evaporation of the solvent, the residue was dissolved in toluene (20 mL). After removal of an insoluble material by centrifugation, the supernatant was concentrated and stored at -30 °C to afford $[L_2(thf)_4Cl]{([f^BuO_3]Zr)_2(\mu-H)_3}$ (8) as colorless crystals in 25% yield (159 mg, 0.10 mmol). 1H NMR (500.00 MHz, toluene-*d*₈): δ 0.96 (s, 18 H, *'Bu*), 1.38 (br. s. THF), 1.48 (s, 36 H, *t k*(Bu), 2.30 (s, 12 H, Me), 3.54 (d, $J = 13.5$ Hz, 4 H, CH₂), 3.55

(br s THE) 4.98 (d, $J = 13.5$ Hz, 4 H, CH₂), 5.91 (s, 3 H, J ₊H) (br. s. THF), 4.98 (d, *J* = 13.5 Hz, 4 H, CH₂), 5.91 (s, 3 H, *μ*-H), 7.06 (s, 8 H, ArH \times 2), 7.27 (s, 4 H, ArH).

X-ray Diffraction Studies for 1b, 2a, 3a, 4, 6a, and 7. Crystallographic data are summarized in Table 1. X-ray quality single crystals were obtained from Et₂O for 1b as colorless blocks,

Matsuo and Kawaguchi

hexane/CH₂Cl₂ for **2a** as colorless plates, toluene/THF for $3a \cdot C_7H_8$ as colorless blocks, hexane/toluene for $4 \cdot 1.5 \text{ C}_6\text{H}_{14}$ as colorless blocks, $6a$ ^{\cdot} C_7H_8 as light-yellow blocks, and toluene for $7\cdot$ C_7H_8 as colorless blocks. Crystals were immersed in Paraton-N oil on a nylon loop and transferred to a Rigaku Mercury (for **2a** and **⁷**' C_7H_8) or Saturn (for $3a$ ⁻C₇H₈, 4·1.5 C₆H₁₄, and $6a$ ⁻C₇H₈) CCD diffractometer equipped with a Rigaku GNNP low-temperature device. Data were collected at $-100(1)$ °C under a cold nitrogen stream using graphite monochromated Mo K α radiation (λ = 0.71070 Å). Equivalent reflections were merged, and the images were processed with the CrystalClear (Rigaku) program. Corrections for Lorentz-polarization effects and absorption were performed.

All of the structures were solved by direct methods and refined on *F* ² by the full-matrix least-squares method using the *Crystal-Structure* (Rigaku) software package. Anisotropic refinement was applied to all non-hydrogen atoms. For **1b**, the hydroxy hydrogen atoms H(64) and H(65) were located from the difference Fourier map and were refined isotropically, and the remaining hydrogen atoms were put at calculated positions with C-H distances of 0.97 Å. All of the hydrogen atoms of **2a** were located from the different Fourier map and were refined isotropically. For **3a**, **4**, **6a**, and **7**, all of the hydrogen atoms were put at calculated positions with C-H distances of 0.97 Å. The crystal solvents of $4 \cdot 1.5C_6H_{14}$ and $6a$ ^{$\text{ }C_7\text{H}_8$ were refined isotropically, in which no hydrogen atom was} included. Additional crystallographic data are given in the Supporting Information (CIF format).

Acknowledgment. The authors acknowledge the Institute for Molecular Science and Ministry of Education, Culture, Sports, Science and Technology, Japan, for financial support for this research. T.M. is grateful to Special Coordination Funds for Promoting Science and Technology.

Supporting Information Available: Listing for X-ray crystallographic files in CIF format for the compounds of **1b**, **2a**, **3a**, **4**, **6a**, and **7** as well as the molecular structure of **7** and the variable temperature 1H NMR spectra of **6a**. This material is available free of charge via the Internet at http://pubs.acs.org.

IC7011167